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EXECUTIVE ABSTRACT 

The Workbench initiative was launched in FY-2017 within the Nuclear Energy Advanced 
Modeling and Simulation (NEAMS) program to facilitate the transition from conventional tools 
to high-fidelity tools. The Workbench provides a common user interface for model creation, 
real-time validation, execution, output processing, and visualization for integrated codes. The 
integration of the Argonne Reactor Computation (ARC) suite of codes into the NEAMS 
Workbench was initiated in FY-2017.  

The ARC codes contain both legacy codes like DIF3D and REBUS-3 that were developed with 
over 30 years of experience, and newer NEAMS additions like MC2-3, PERSENT and PROTEUS. 
The ARC integration into the NEAMS Workbench interface relies on the PyARC module which 
handles the pre- and post-processing of the native ARC codes input, and the runtime 
environment. The PyARC module together with the NEAMS Workbench interface are both 
released under Open Source Software licenses.  

Integrating the ARC codes into the Workbench benefits directly the advanced reactor 
modeling community by: 

- Providing a set of controlled, maintained, documented and validated scripts to 
generate ARC inputs, which promotes best practices, reduces the learning curve, and 
facilitates project collaboration.  

- Improving the user experience with the ARC codes: the Workbench interface provides 
assistance for building an input through auto-completion, real-time validation, 
document navigation, and geometry and results visualization.  

- Enabling new modeling capabilities for advanced reactor design and analyses. The 
PyARC module facilitates and automatizes complex calculations and workflows for 
reactor analysis enabling geometrical perturbations, cross-section update through 
depletion, etc. The Dakota/PyARC coupling in the Workbench was also demonstrated 
to enable mathematical optimization and sensitivity analysis/uncertainty 
quantification (SA/UQ) techniques with ARC neutronic simulations. 

- Helping users transition to high-fidelity NEAMS codes, through PROTEUS integration 
within the same input logic as the legacy ARC codes. 

In FY-2020, the effort focused on integrating REBUS to ORIGEN-S workflow to enable detailed 
isotopic composition and decay heat calculation. Additional capabilities were also integrated 
in response to user requests, such as the generation of the covariance matrix within the 
nuclear data uncertainties on reactivity coefficients. Significant effort was continued in FY-
2020 to train and support users from ANL, and Westinghouse.  

The ARC codes are actively used through the NEAMS Workbench by nuclear engineers at ANL, 
INL, NCSU, and Westinghouse, for LFR, MSR, micro-reactor, and SFR core design analyses. 
Future efforts will focus on adding new and existing modeling capabilities available with the 
ARC and NEAMS codes, training new users and supporting them to continue building user 
experience. 
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1 Introduction 

One of the objectives of the Nuclear Energy Advanced Modeling and Simulation (NEAMS) 
Workbench is to facilitate the deployment of the high-fidelity codes developed within the NEAMS 
program. The Workbench [1] initiative was launched in FY-2017 to facilitate the transition from 
conventional tools to high fidelity tools [2]. The Workbench provides a common user interface for 
model creation, real-time validation, execution, output processing, and visualization for 
integrated codes. The integration of the Argonne Reactor Computation (ARC) suite of codes into 
the NEAMS Workbench was initiated in FY-2017 [3][4][5]. 

The ARC suite of codes [6] gathers neutronics, thermal hydraulics, safety, and fuel behavior 
analysis codes. The current focus of the Workbench integration is on the deterministic neutronic 
codes. It includes MC2-3 [7] for multi-group cross-section processing, DIF3D [8] for flux calculation, 
REBUS-3 [9] for depletion and equilibrium calculations, PERSENT [10] for perturbation theory 
calculations (perturbation, sensitivity and uncertainty quantification), GAMSOR [11] for gamma 
heating calculations, and PROTEUS transport solvers [12][13]. These ARC and NEAMS codes are 
used at national laboratories, universities, and companies for advanced reactor analyses. They 
gather more than 30 years of development, went through extensive validation and verification, 
and can solve complex physics phenomena in a very efficient way. However, these codes require 
knowledge on reactor physics and experience on fast reactor design in order to be familiar with 
the extent of their capabilities, and users mostly rely on scripts, developed based on their 
experiences, to generate inputs. Integrating them into the NEAMS Workbench was initiated to 
address these challenges and to improve user experience with these codes by taking advantage 
of the various benefits brought by the Workbench interface. Their integration was accomplished 
through the development of the PyARC module within the Workbench. 

Both the Workbench [14] and PyARC are being distributed under Open Source Software licenses. 
The status of the PROTEUS and ARC integration [15] is described in this report, focusing on FY-
2020 developments (highlighted in this report) and on description of the new released version 
1.1.0 of PyARC. The code integration framework in the PyARC bundle of the Workbench is 
reminded in Chapter 2. The status of the capabilities integrated in PyARC are discussed in Chapter 
3. Finally, Chapter 4 draws the conclusions and discusses future developments. 

 

https://code.ornl.gov/neams-workbench/downloads
https://code.ornl.gov/neams-workbench/PyARC
https://code.ornl.gov/neams-workbench/PyARC/-/releases
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2 Framework for ARC and PROTEUS Integration 

Figure 2-1 illustrates how the Workbench interface connects with the ARC codes. This is a “black 
box” type of integration where the Workbench must rely on an opaque runtime module (called 
PyARC) that conducts the native input formatting. One of the benefits of the “black box” type of 
integration is that the user is shielded from the original input of the legacy codes. There are several 
components to the integration that are described in this section: 

• Workbench interface: It is developed at ORNL and several components of this interface 
are required for a code’s integration: 

o Common input  

o Templates 

o Visualization  

• PyARC module: this is a python module required for “black box” integration that contains 
the logic for processing the code’s inputs, generating the legacy ARC code input, running 
them, and post-processing the outputs. This module is the glue between the Workbench 
interface and the ARC codes. 

 

 

Figure 2-1. Structure of the ARC integration in the Workbench. 

2.1 The Workbench Interface 

The Workbench [1] interface is developed at ORNL and designed to assist new users, while not 
obstructing experienced ones. The Workbench provides a common user interface for model 
creation, real-time validation, execution, output processing, and visualization for integrated 
codes. For instance, the user is guided by the auto-completion capability in the Workbench to 
build its core model in the “common input” structure. 

Workbench	ARC	input Geometry	Visualization

3D	results	visualization
Results	plotting

Post-processing	of	ARC	code’s	results	
in	summary	tables

PyARC Module
• Pre-processing

• Translation into codes input  language

• Runtime environment

• Post-processing
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Code Package
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TWODANT

PARTISN

DIF3D

REBUS
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GAMSOR PERSENT

PROTEUS

NODAL

MOC
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2.1.1 Common input  

The Workbench input format adopted is described as the “common input” since it is used to 
generate inputs for MC2-3, DIF3D, REBUS-3, and PERSENT for integrated problem-dependent 
cross-section preparation, core analysis, depletion, and sensitivity/uncertainty quantification. The 
main benefits of the “common input” strategy is to insure every native input uses consistent 
information and to facilitate project collaboration (since one PyARC input contains all the problem 
definition, while the MC2-3, REBUS-3, PERSENT, and PROTEUS inputs only contain part of the 
information).  

This “common input” allows modeling a reactor geometry in an intuitive and flexible way and was 
developed with continuous involvement of ARC users. It uses the open source Workbench 
Analysis Sequence Processor’s (WASP) Standard Object Notation (SON) [16] format that enables 
the auto-completion, real-time input validation, and access to templates, through the Workbench 
interface. 

The structure of the input is shown in Figure 2-1 and a tutorial was developed (detailed in Section 
2.5) to explain in detail the input logic to new users. The common input is defined in the “arc.sch” 
file that takes ~5000 lines of code. Detailed documentation of all the input options is provided (in 
the “PyARC_README.html” file of the PyARC package). The user has direct access to the input 
keyword definitions through the Workbench user-interface upon auto-completion. The input is 
automatically validated for correctness by the WASP Hierarchical Input Validation Engine (HIVE) 
upon edit by the user from within the NEAMS Workbench and upon by PyARC.   

2.1.2 Templates 

The Workbench, through its WASP subcomponent, contains the HierarchicAL Input Template 
Engine (HALITE) developed to expand hierarchical input data into code-specific input. Templates 
are used to assist users in generating the common input within the Workbench. The common 
input templates were developed in parallel to the schema and the common input. Those are 
blocks of input with default values accessible for convenience to the user. A total of 113 templates 
were generated for PyARC. Templates are also relied upon by the Dakota/PyARC coupling, as 
explained in Section 2.4. 

2.1.3 Visualization 

The Workbench provides different built-in types of visualization capabilities that PyARC benefits 
from. In particular, it provides visualization of user input problems through built-in input 
visualization capabilities (see Figure 2-1). This visualization capability supports 2D/3D hexagonal 
and Cartesian geometries.  

The VisIT tool [17] is integrated into the Workbench and allows direct visualization of the ARC 
post-processed outputs, as illustrated in Figure 2-1. The Workbench interface supports plotting 
capabilities using line plots, histograms, bar charts, etc. Two types of line plots were implemented 
to display the multi-group cross sections processed by MC2-3 (as illustrated in Figure 2-1), and the 
region-wise flux spectrum printed by DIF3D and REBUS-3 (also shown in Figure 2-1). 

https://code.ornl.gov/neams-workbench/wasp
https://code.ornl.gov/neams-workbench/wasp/tree/master/waspson/README.md
https://code.ornl.gov/neams-workbench/wasp/blob/master/wasphive/README.md
https://code.ornl.gov/neams-workbench/wasp/tree/master/wasphalite/README.md
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A utility script provides the user 2D plot generation of the core geometry, as shown in Figure 2-2, 
and of the assembly peak or integrated results obtained with DIF3D in standalone-DIF3D 
simulations (as illustrated in Figure 3-3) or together with GAMSOR, PERSENT, REBUS, or PROTEUS.  

 

Figure 2-2. Automatic generation of core layout. 

2.2 PyARC Module 

The PyARC module is the glue between the Workbench interface and the ARC codes. It is being 
released by ANL under an open-source software license and is bundled with the Workbench install 
for user convenience. For a “black box” integration, this wrapper is essential as it contains the 
logic to: 

• process information from the common input  

• perform additional verifications on the core model that the validation engine of the 
Workbench cannot perform  

• pre-process the information, calculating for instance homogenized atom densities in 
different regions 

• generate the ARC codes’ native inputs 

• handle the runtime environment, which can be very complex. For instance, running MC2-
3 elementary cell calculations in parallel to calculate fine-mesh cross-sections, followed by 
TWODANT to calculate region-wise flux spectrum, then by MC2-3 for broad-mesh 
condensation of the cross-sections, then by REBUS to calculate depleted compositions, 
then by PERSENT to calculate neutronic feedback coefficients on depleted core 
compositions, etc. 

https://code.ornl.gov/neams-workbench/PyARC/-/tree/master
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• post-process the outputs, gathering the main results of the different codes’ and creating 
a single summary file. 

The PyARC module gathers more than 14,000 lines of Python code developed through a 
collaborative environment on GitLab so that new additions are tracked and reviewed. The PyARC 
module relies on the following sub-modules: 

• PyARCModel: loads the input, performs list of additional verification, performs pre-
processing on the input 

• PyARCUtils: contains utilities procedures 

• PyARCUserObject: defines variables and procedures that are used throughout the code 

• PyMCC3, PyREBUS, PyPERSENT, PyGAMSOR, PyREBORS, PyPROTEUS (includes 
PyPROTEUSMOCObject, PyPROTEUSNodalObject, PyPROTEUSMSRObject): contain the 
logic for input writing, execution, and post-processing for each code 

• PyRzmflxCode: contain the logic for input writing, execution, and post-processing for 
TWODANT and PARTISN 

• The PyARC module also relies on the PySCL module that is developed by ORNL to provide 
the standard composition library (SCL) 

Tests are developed for regression testing after each code modification and prior to committing 
and pushing modifications to the protected master branch. Currently, more than 200 unit tests 
are implemented to check the common input processing, interpretation of the standard 
composition library, input generation (of MC2-3, DIF3D, REBUS-3, TWODANT, PARTISN, PERSENT, 
GAMSOR, PROTEUS, ORIGEN-S), execution of the codes, and post-processing of the outputs. 
Consequently, the unit tests check the pre-processing, input writing, execution, and post-
processing logic of PyARC.  

ORNL also implemented the continuous integration (CI) testing and deployment (CD) bundle 
infrastructure for the PyARC software. This checks all tests at each ‘push’ to the code repository 
and ensures all features are functional on Linux and Mac operating systems, and subsequently 
bundles the new PyARC version into an easily deployable file.  

2.3 PyARC Workflow 

PyARC takes a “.son” input that is generated through the Workbench interface (or using any text 
editor) following the formatting defined in Section 2.1.1. Examples of inputs are provided in the 
training material described in Section 2.5. In addition to the main input, additional input files may 
be requested to provide decay chain (with REBUS native structure), fission yields of lumped fission 
products, covariance matrix for uncertainty calculations, etc. A repository of such pre-built files is 
made available. 

PyARC simulations are executed through the “run” button on the Workbench interface. 
Alternatively, the following commend can be used to execute PyARC input: 

/link/to/Workbench/rte/entry.sh -i my_pyarc_input.son 

https://code.ornl.gov/neams-workbench/PyARC
https://code.ornl.gov/neams-workbench/PyARC/-/tree/master/tutorial/AdditionalFiles
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Every PyARC simulations will generate the following output files: 

• “.summary”: summary of the output files from each ARC simulations. 

• “.timeline.out”: timeline of calculation for real-time check of the status of the calculation, 
and to save the computational time spent at every step of the workflow. 

• “.inp”: all input files generated by PyARC concatenated into one single file 

• “.out”: all output files generated from ARC runs concatenated in one single file 

• “.vtk”: region-wise results in a VisIt-readable format 

• “.zip”: gathers all input, output, isotxs, and summary files 

• “.user_info.out”: important information about the model, including errors, warnings, 
description of the automatically computed 1D and RZ geometries (see Section 3.1) and of 
the volume fractions. In particular, the list of isotopes and region IDs are detailed to 
facilitate advanced ARC users understanding the PyARC-generated native code inputs. 

Additional output files may be generated when running different codes, as discussed in Section 3. 

2.4 PyARC Coupling with Dakota 

The Workbench provides a common user interface for model creation allowing for its integrated 
codes to communicate and work together with limited coupling development. The feasibility and 
benefits of using the Workbench as a coupling mechanism between the Dakota [18] code and 
PyARC was demonstrated in [19],[20],[21], and [22]. The Dakota software maintained by Sandia 
National Laboratory is a sensitivity analysis/uncertainty quantification (SA/UQ) and optimization 
toolkit with over 20 years of supporting development. Dakota provides advanced mathematical 
methods to vary one code’s input parameters and analyze the output results for optimization and 
uncertainty quantification analyses.  

2.4.1 Workflow Implemented 

The workflow in Figure 2-3 was developed to allow Dakota to drive the PyARC calculations within 
the Workbench interface. For SA/UQ or optimization analyses, the PyARC input is perturbed by a 
sequence of random values from Dakota. After the ARC runs are performed with different 
sampled input values, Dakota evaluates the user-specified responses of interest. For SA/UQ types 
of analyses, Dakota performs statistical analysis on response functions. For optimization 
problems, it selects best performing solutions and generate new samples.  
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Figure 2-3. Schematic of the Dakota/PyARC coupling. 

Three files are required in this workflow: 

- Dakota input: Input built by the analyst with the aid of the Workbench that describes the 
sensitivity, uncertainty or optimization problem options. 

- PyARC “common input”: This is the PyARC input built by the analyst with the aid of the 
Workbench, but saved in a template format where some input values are replaced with 
variables defined in the Dakota input. 

- PyARC.driver: Input built by the analyst with the aid of the Workbench that connects the 
Dakota input to the PyARC application. It contains the logic to extract (with customizable 
grep commands or links to post-processing scripts) different results from the ARC output 
summary file. 

The main PyARC results of interest (core lifetime, inventory, fissile enrichment, peak power, peak 
fast flux, etc.) are returned in the “.summary” output file so that the user does not need to develop 
his own postprocessor logic to extract such results to return to Dakota. An example of 
Dakota/PyARC coupling is detailed in Sample #11.  

2.4.2 Benefits of the Dakota/PyARC Coupling 

The Dakota/ARC coupling would be a significant effort to set up outside of the Workbench since 
the individual ARC codes use different input logic. This would require developing a script that 
propagates the input parameters sampled throughout the different codes, which is effectively 
done with the PyARC module. This coupling enables new capabilities for ARC users since Dakota 
can be used for driving sensitivity analysis and uncertainty quantification (SA/UQ) calculations 
[19], [20], and core design optimization with the ARC codes [21], [22].  

2.4.2.1 Optimization problems 

Mathematical optimization methods can be used to investigate a space of input options and find 
the most promising solutions (usually a compromise between targeted performance). This is 
especially well suited for advanced reactor design work, where many core options need to be 
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evaluated (size and number of fuel pins, different fuel forms, etc.) to assess their impact on core 
performance (irradiation testing capabilities, inherent safety performance, etc.). Dakota provides 
a wide range of advanced optimization methods that can be used to effectively investigate the 
design space and find the best performing core concepts.  

2.4.2.2 SA/UQ problems 

Dakota extends the SA/UQ capability currently available in the ARC codes (with PERSENT) to 
propagate the uncertainty on any type of input parameter, and to observe its impact on any 
output result. In fact, there are different benefits/challenges associated with solving SA/UQ 
problems through adjoint-based perturbation theory (available with PERSENT [10]) and through 
stochastic sampling (with Dakota [18]) making both approaches complimentary to each other. The 
adjoint-based method is usually cheaper in terms of computational resources, is well suited to 
treat a large number of uncertain parameters such as uncertainties on multi-group cross-sections, 
and can provide detailed information such as the impact of cross-section values in any energy 
group, in any core location, on different core parameters. It is usually applied to see the 
uncertainty impact on the eigenvalue, on reactivity effects and on reaction rates. The stochastic 
sampling method provides a more general approach that can be applicable to any uncertainty 
problem considered (including those with changes in core geometry), to analyze the impact 
uncertain parameters may have on any output of the problem. However, it may require many 
simulations to reach targeted levels of confidence. An analysis using Dakota to drive PyARC 
simulations for SA/UQ problems is proposed in Appendix C of [5]. 

2.5 Training Material 

Training material is available to assist a user getting started. It consists in a list of sample problems 
provided within the PyARC released bundle, that are documented and that demonstrate and 
explain the most popular capabilities: 

• Sample #1 - MC2-3 cross-section processing with 1step approach, and modeling full-core 
with DIF3D diffusion. 

• Sample #2 - DIF3D calculation with VARIANT for full-core simulation. 

• Sample #3 - MC2-3 cross-section processing with 1D heterogeneous model and 2steps 
(TWODANT) calculation, modeling full-core with DIF3D finite diffusion. 

• Sample #4 - MC2-3 cross-section processing with homogeneous - 1step calculation, and 
core once-through fuel depletion calculation with REBUS with DIF3D finite difference 
option with third core symmetry. 

• Sample #5 - REBUS equilibrium calculation with DIF3D finite difference option with third 
core symmetry (no reprocessing). 

• Sample #6 - REBUS equilibrium calculation with DIF3D finite difference option with third 
core symmetry (with reprocessing and one iteration between MC2-3 and REBUS 
equilibrium). 

• Sample #7 - GAMSOR calculation for gamma transport calculation. 

https://code.ornl.gov/neams-workbench/PyARC/-/tree/master/tutorial
https://code.ornl.gov/neams-workbench/PyARC/-/blob/master/tutorial/Sample_1_MCC3_DIF3DFD/README.md#sample1
https://code.ornl.gov/neams-workbench/PyARC/-/blob/master/tutorial/Sample_2_VARIANT/README.md#sample2
https://code.ornl.gov/neams-workbench/PyARC/-/blob/master/tutorial/Sample_3_TWODANT_DIF3DFD/README.md#sample3
https://code.ornl.gov/neams-workbench/PyARC/-/blob/master/tutorial/Sample_4_MCC3_REBUS1T/README.md#sample4
https://code.ornl.gov/neams-workbench/PyARC/-/blob/master/tutorial/Sample_5_REBUSEQ1/README.md#sample5
https://code.ornl.gov/neams-workbench/PyARC/-/blob/master/tutorial/Sample_6_REBUSEQ2/README.md#sample6
https://code.ornl.gov/neams-workbench/PyARC/-/blob/master/tutorial/Sample_7_GAMSOR/README.md#sample7
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• Sample #8 - REBUS once-through fuel depletion calculation with explicitly defined fuel 
management strategy and third core symmetry. 

• Sample #9 - PERSENT perturbation calculations to process needed reactivity coefficients. 

• Sample #10 - PERSENT sensitivity calculations to perform SA/UQ analyses on k-eff and 
reactivity coefficients. 

• Sample #11 - Dakota coupling with PyARC to run SA/UQ and Optimization problems 

• Sample #12 - PROTEUS-NODAL calculation 

• Sample #13 - PROTEUS-NODAL calculation with molten salt fuel (MSR) 

• Sample #14 - REBUS to ORIGEN-S calculation 

Those Sample problems are available in the “PyARC/tutorial” folder that also contains the 
AdditionalFiles folder where the user has access to different decay chains, lumped fission 
products, and covariance matrices. It also contains the inputs to the SFR-UAM benchmark 
problems [23][5]. 

 

 

https://code.ornl.gov/neams-workbench/PyARC/-/blob/master/tutorial/Sample_8_REBUS1TShuffling/README.md#sample8
https://code.ornl.gov/neams-workbench/PyARC/-/blob/master/tutorial/Sample_9_PERSENT_pert/README.md#sample9
https://code.ornl.gov/neams-workbench/PyARC/-/blob/master/tutorial/Sample_10_PERSENT_sens/README.md#sample10
https://code.ornl.gov/neams-workbench/PyARC/-/blob/master/tutorial/Sample_11_Dakota_Sens_Opt/README.md#sample11
https://code.ornl.gov/neams-workbench/PyARC/-/blob/master/tutorial/Sample_12_PROTEUS_NODAL/README.md#sample12
https://code.ornl.gov/neams-workbench/PyARC/-/blob/master/tutorial/Sample_13_PROTEUS_MSR/README.md#sample13
https://code.ornl.gov/neams-workbench/PyARC/-/blob/master/tutorial/Sample_14_ORIGENS/README.md#sample14
https://code.ornl.gov/neams-workbench/PyARC/-/tree/master/tutorial/AdditionalFiles
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3 Capabilities Integrated in PyARC 

One of the benefits of the “black box” type of integration adopted with the PyARC module is that 
the user is shielded from the original input of the legacy codes. The associated challenge is that 
some of the options and code’s capabilities may not be made available to the user through the 
“black box”. The ARC integration focuses on the popular and important capabilities of each code 
to streamline most user’s workflows. This section summarizes the status of the ARC codes 
integration within the NEAMS Workbench, while highlighting the work completed in FY-2020. 
Continuing efforts are underway to implement additional modeling capabilities based on the ARC 
and NEAMS codes.  

3.1 MC2-3 [7] 

The MC2-3 code is developed within the NEAMS program for multi-group cross-section processing 
for both fast and thermal spectrum reactors. From the Workbench, one can generate cross-
sections for pre-generated or user-defined energy-group structure with different scattering 
orders. The user can merge cross-sections to define lumped fission products used in REBUS-3. 
Neutron slowing down equation can be solved over a homogenized cell or over a heterogeneous 
geometry [24] based on 1D cylindrical or slab geometries.  

For region-wise group condensation, two approaches were implemented within the Workbench. 
The first approach consists in generating neutron leakage files from the fuel regions that can be 
used as external sources in the non-fuel regions (for instance, reflector), as demonstrated in 
Sample #1. The second approach consists of using TWODANT [25] or PARTISN [26], those are Sn 
neutron transport equation solvers, for fine-group (1000 – 2000 groups) flux calculation using an 
equivalent 2D (RZ or XY) core model. This approach is demonstrated in Sample #3. In terms of 
output processing, the multi-group cross-sections generated in the ISOTXS file can be plotted 
automatically in the Workbench interface, as illustrated in Figure 3-1.  

Upon completion, PyARC returns the TWODANT, PARTISN and MC2-3 inputs and outputs (in the 
“.inp” and “.out” files) and the multi-group cross-section files: 

- The “.isotxs” files are binary files that can be re-used by DIF3D/REBUS/PERSENT to avoid 
re-running the initial MC2-3 calculation. 

- The “.isotxs.edit” files are text files containing all the multi-group XS results that can be 
opened directly with the Workbench to plot automatically the cross-section using the 
“ISOTXS – ISOTOPE XS” processor (as shown in Figure 3-1). 

Different “isotxs” files may be generated at different depletion steps, the following nomenclature 
logic is used: 

o “.isotxs_R_0”: Reference (un-perturbed), depletion time-step 0 (provided composition or 
beginning of equilibrium cycle); 

o “.isotxs_D_4”: “D” perturbation, depletion time-step 4. 

Additional Notes: 

• PyARC provides the option to give a lower threshold to the atom density in heterogeneous 
regions using the option “min_dens_het_calc”. This option is especially useful for 

https://code.ornl.gov/neams-https:/code.ornl.gov/neams-workbench/PyARC/-/blob/master/tutorial/Sample_1_MCC3_DIF3DFD/README.md#sample1C3_DIF3DFD/README.md
https://code.ornl.gov/neams-workbench/PyARC/-/blob/master/tutorial/Sample_3_TWODANT_DIF3DFD/README.md#sample3
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simulating coolant void coefficient when using the heterogeneous treatment in MC2-3 
since its 1D transport solver provides convergence issues with very low-density regions. 

• MC2-3 is also applied for computing the DLAYXS, GAMISO and PMATRX required for 
PERSENT (delayed neutron fraction), PROTEUS (MSR) and GAMSOR calculations, as further 
discussed in Sections 3.4, 3.5, and 3.6.1. 

• Automatic generation of RZ geometry for TWODANT or PARTISN and 1D geometries for 
MC2-3 are available to facilitate the use of these options by reducing pre-processing time 
to the user and risks of mistakes. These methods are only available for hexagonal-z core 
geometries. Description of the methods developed and benchmark calculations is 
provided in Appendix A of [5]. Sample #3 provides an example to get started with these 
options. 

 

Figure 3-1. Example of multi-group XS plot automatically generated with the Workbench from 
ISOTXS edit file. 

3.2 DIF3D [8] 

The DIF3D code is a legacy ARC tool used for neutron and gamma flux calculations on various 
types of geometries, based on pre-generated multi-group cross-sections. The multi-group cross-
sections can be generated using MC2-3 calculations or a compatible set of previously calculated 
multi-group cross-sections.  

The 2D/3D-Hexagonal and 2D/3D-Cartesian types of geometries are supported through the 
Workbench. The DIF3D code includes 3 neutron solvers (Nodal, Finite Difference, and VARIANT 
[27]) that were all enabled. This is illustrated with Samples #1 (Finite Difference) and #2 
(VARIANT). Both neutron flux and gamma flux (discussed in Section 3.5) calculations are 
integrated into the Workbench.  

https://code.ornl.gov/neams-workbench/PyARC/-/blob/master/tutorial/Sample_3_TWODANT_DIF3DFD/README.md#sample3
https://code.ornl.gov/neams-workbench/PyARC/-/blob/master/tutorial/Sample_1_MCC3_DIF3DFD/README.md#sample1
https://code.ornl.gov/neams-workbench/PyARC/-/blob/master/tutorial/Sample_2_VARIANT/README.md#sample2


 Status of the NEAMS and ARC neutronic fast reactor tools integration to the NEAMS Workbench 
September 30, 2020 

 

ANL/NEAMS-20/2 12  
 

PyARC returns the full DIF3D input and output (in the “.inp” and “.out” files). Post-processing of 
DIF3D output was implemented by printing the main information of interest to a user (e.g., the 
neutron flux in different core areas, integrated flux and power per assemblies) in the summary 
file (“.summary”). When opening this “.summary” file with the Workbench, the user can use the 
“flux spectrum” processor to automatically plot the neutron flux spectrum. Direct visualization of 
the power density, neutron flux, atom densities, etc., is enabled by opening the generated “.vtk” 
file with VisIT through the Workbench, as also illustrated in Figure 3-2.  

As discussed in Section 2.1.3, new 2D visualization is available, through an external script run on 
the generated summary file, or directly through the PyARC workflow by using the input line: 
“calculations/plot_2d = true”. An example of peak power density radial distribution is provided in 
Figure 3-3. 

 

Figure 3-2. Example of visualizations available for DIF3D and REBUS-3: neutron flux spectrum 
(left) and power map (right) calculated and plotted with the Workbench. 

 

Figure 3-3. Example of 2D plot visualization of peak power density per assembly for hexagonal 
and Cartesian geometry. 
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3.3 REBUS-3 [9] 

REBUS-3 is a legacy ARC code used for fuel cycle analysis using DIF3D solvers. It allows a wide 
range of fuel cycle modeling options such as assembly shuffling, enrichment or cycle length search 
at equilibrium state. In terms of post-processing, the same capabilities developed for DIF3D are 
made available with REBUS-3 at every time-step of the depletion calculation. In particular, the 
“.rebus_X.vtk” file is generated by REBUS-3 at time X days. Some specific information are also 
printed out in the “.summary” file such as the peak burnup and fast fluence, the optimized 
enrichment (computed for equilibrium calculation), etc. 

PyARC integration of REBUS-3 allows its user specifying its own decay chain by directly providing 
an external text file containing the decay chain input from REBUS-3 (cards 09, 24, 25), which is 
being parsed in PyARC. Some examples of decay chains (and associated fission yields) are provided 
in AdditionalFiles. 

The once-through depletion capability is illustrated in Sample #4. The original option to re-
calculate the multi-group cross-sections at different time-steps of the depletion was implemented 
in the case of the once-through depletion, as illustrated in Figure 3-4. This capability can be 
especially relevant when modeling very high burnup fuel or a reactor with thermalized neutron 
flux. 

 

Figure 3-4. Multi-step depletion procedure implemented in PyARC. 

The enrichment or cycle length search options at equilibrium state were also integrated, where 
the user can define reprocessing plants, external feeds, and fuel-cycle strategies, as illustrated in 
Samples #5 and #6. The original option was implemented to iterate between the multi-group 
cross-sections computed with MC2-3 at beginning of equilibrium cycle, and the equilibrium search 
calculation performed with REBUS-3, as illustrated in Figure 3-5.  

 

Figure 3-5. Equilibrium cross-section iteration procedure implemented in PyARC. 

The explicit fuel management capability of REBUS is enabled using the “once_through_shuffling” 
option. This option allows defining different cycles and the paths for each assembly, allowing to 
discharge, move or reload assemblies. Sample #8 illustrates this capability and explains the input 
logic. 

REBUSMC2-3 REBUSMC2-3
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atom
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https://code.ornl.gov/neams-workbench/PyARC/-/tree/master/tutorial/AdditionalFiles
https://code.ornl.gov/neams-workbench/PyARC/-/blob/master/tutorial/Sample_4_MCC3_REBUS1T/README.md#sample4
https://code.ornl.gov/neams-workbench/PyARC/-/blob/master/tutorial/Sample_5_REBUSEQ1/README.md#sample5
https://code.ornl.gov/neams-workbench/PyARC/-/blob/master/tutorial/Sample_6_REBUSEQ2/README.md#sample6
https://code.ornl.gov/neams-workbench/PyARC/-/blob/master/tutorial/Sample_8_REBUS1TShuffling/README.md#sample8
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The REBUS-3 code relies on simplified decay chain tracking “only” ~200 isotopes. For higher 
fidelity depletion calculations that are typically needed for decay heat simulations, the ORIGEN-S 
code can be used, as discussed in Section 3.7. 

3.4 PERSENT [10] 

PERSENT is a perturbation theory code developed within the NEAMS program and based on the 
neutron transport equation in a 2D or 3D geometry. It allows calculating reactivity feedback 
coefficients, sensitivity coefficients [28], and nuclear data uncertainties. Perturbation and 
sensitivity calculations were implemented on eigenvalue, beta and lambda problems and can be 
automatically run at different depletion steps (computed with REBUS-3). The user can define 
which materials are perturbed with a change in density or in temperature or which surfaces are 
perturbed (only for direct DIF3D perturbations, as explained below). The cross-sections of the 
perturbed composition can be automatically re-calculated both for perturbation and for 
sensitivity calculations. The nuclear data uncertainties can be estimated on the eigenvalue, beta, 
lambda, and on the reactivity coefficients automatically by providing a covariance matrix (in a 
PERSENT-compatible file format).  

Direct DIF3D calculations are enabled as an alternative to PERSENT perturbation theory 
calculations. This can be especially useful for double checking the perturbation theory result and 
for modeling geometric perturbations such as the axial and radial feedback coefficients or the 
control rod worth. Second, to optimize the workflow of PERSENT calculations, one added the 
option to perform preliminary un-perturbed DIF3D calculations to use generated flux files (adjoint 
and forward) in different PERSENT runs. Finally, every PERSENT or DIF3D calculations can be run 
in parallel on different CPUs. 

Visualization of the perturbation results is enabled within the Workbench using VisIt [17]: for 
instance, “.persent_P_ref.vtk” is the vtk file generated by PERSENT for perturbation P. For 
illustration purposes, Figure 3-6 shows the distribution of the sodium void worth calculated on an 
SFR design and plotted by VisIt within the Workbench.  

Perturbation calculations can be run based on already perturbed geometry or compositions using 
the “ref_is_pert_config” option. This allows simulation of the voided Doppler coefficient, or of any 
reactivity coefficients with control rods inserted at critical location through a geometry 
perturbation. Samples #9 and #10 were developed to train users in correctly computing reactivity 
coefficients feedback as required for safety analyses (using SAS4A/SASSYS). 

https://code.ornl.gov/neams-workbench/PyARC/-/blob/master/tutorial/Sample_9_PERSENT_pert/README.md#sample9
https://code.ornl.gov/neams-workbench/PyARC/-/blob/master/tutorial/Sample_10_PERSENT_sens/README.md#sample10


Status of the NEAMS and ARC neutronic fast reactor tools integration to the NEAMS Workbench 
September 30, 2020 

 

 15 ANL/NEAMS-20/2 

 

Figure 3-6. Sodium void worth distribution [kg-1] calculated and plotted within the Workbench. 

New in V1.1.0: CovMat Utility 

This utility has been developed in FY-2020 to streamline generation of covariance matrix of 
nuclear data uncertainties on reactivity coefficients, which is used for uncertainty propagation 
through transient simulations [29]. The workflow implemented in this utility is detailed in 
Appendix A. 

3.5 GAMSOR [11] 

The GAMSOR code is a legacy code developed within the ARC suite to assist analysts in calculating 
gamma heating. GAMSOR computes the gamma flux through a sequence of MC2-3 for neutron 
and gamma cross-section preparation, and DIF3D calculations to solve the neutron flux, the 
gamma flux, and then to combine the results for summary edition. This complex workflow is 
summarized in Figure 3-7.  

The GAMSOR Workflow is fully integrated within the PyARC interface and Sample #7 provides 
training material. The GAMSOR user input proposed through PyARC only requires the energy-
group structure of GAMMA calculation and the list of depletion time-steps on which to perform 
GAMMA calculations.  

In terms of post-processing, similar capabilities as developed for DIF3D are made available, as 
illustrated in Figure 3-8. The user has access to summary tables with assembly-integrated neutron 
and gamma powers in the “.summary” file. Automatic 2D plotting of the power map is also 
available. The VisIt visualization tool can be used for 3D visualization of the neutron and gamma 

https://code.ornl.gov/neams-workbench/PyARC/-/blob/master/tutorial/Sample_7_GAMSOR/README.md#sample7
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power. Finally, the region-wise neutron and gamma power levels are provided back to the user in 
the “.zip/gamsor_table_*.out” files. 

  

Figure 3-7. GAMSOR workflow implemented in PyARC. 

 

Figure 3-8. Example of enabled GAMSOR input and result visualization. 
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3.6  PROTEUS 

The PROTEUS code developed under NEAMS project is a high-fidelity deterministic neutron 
transport code based on unstructured finite element meshes, which solves the steady-state and 
transient neutron transport problem using the method of characteristics (MOC) or the discrete 
ordinate (SN) method as high-fidelity neutron transport solvers. Additionally, the nodal transport 
method (NODAL) option for structured geometries is available to provide a fast running solution 
option within the same framework so that a user can choose a level of solution fidelity and 
computational resource requirements depending on its need. The PROTEUS codes were 
integrated into the NEAMS Workbench interface to improve the usability by taking advantage of 
the PyARC framework. For the PROTEUS integrations, the extension of the PyARC module referred 
to its PyPROTEUS sub-module was developed for connecting the Workbench interfaces using the 
“black box” approach of code integration. Figure 3-9 illustrates how the Workbench interface 
connects with the PROTEUS codes through the PyPROTEUS/PyARC wrappers. The followings are 
the integration status of PROTEUS codes: 

- NODAL: Fully integrated for steady-state calculations. The integration supports all the 
features of the Workbench/PyARC framework (input generation, workflow management, 
post-processing). 

- MOC: Partially integrated for steady-state and transient calculations. Requires off-line 
mesh and cross section generation since this is currently not supported under the PyARC 
common user interface model creation.  

- SN: Not integrated yet. 

Workbench
• Input Editing
• Geometry Visualization
• Post-processing
• Plotting and Visualization

PyARC Module
• Pre-processing - Interpretation of Workbench ARC Input 
• Runtime Environment

PyPROTEUS: Extension for PROTEUS
• Translation into PROTEUS codes input language
• Post-processing

P
R

O
TE

U
S

NODAL

MOC

Utilities

 

Figure 3-9. Structure of the PROTEUS integration in the PyARC and the Workbench.  

3.6.1 PROTEUS-NODAL [12]  

The PROTEUS-NODAL code is a nodal transport solver based on homogenized assemblies that 
provides a conventional fidelity level in a consistent PROTEUS code framework. Two solver 
methodologies were implemented on that framework that constitute the nodal solver 
capabilities: PN and Simplified PN (SPN). The PN approach is the identical methodology used in 
VARIANT although the release version only handles diffusion theory on Cartesian and hexagonal 
grids. For the SPN approach, a transverse integrated nodal methodology was built on the 
hexagonal grid model utilizing up to a SP3 approximation. The PROTEUS-NODAL code has 
capabilities to solve steady-state and transient problems. Additionally, the flowing fuel modeling 
capability enables to model the impact on the neutron precursor distribution for a flowing fuel in 
molten salt reactor (MSR) analyses. Currently, only the steady-state and MSR analysis capabilities 
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are fully integrated into the Workbench, while transient analysis capability should be 
implemented in the future.  

The workflow for PROTEUS-NODAL calculations was built upon the existing sub-modules for DIF3D 
calculations and the implemented workflow is illustrated in Figure 3-10.  The PyPROTEUS modules 
return the following input files for PROTEUS-NODAL execution:  

- Mesh: defines geometrical dimensions, region configurations, and boundary conditions. 

- Assignment: defines compositions and assigns them to the geometrical regions.  

- Driver: defines the simulation parameters such as power level, convergence criteria, and 
iteration limits. 

Along with these PROTEUS-specific input files, the PyARC module generates the cross sections and 
the optional delayed neutron parameters in the ISOTXS and DLAYXS file formats respectively. The 
PROTEUS-NODAL calculation is executed via the runtime environment of PyARC. Once the 
calculation is completed, the PROTEUS-NODAL code produces three basic types of outputs as: 

- Main Text-based Screen Output: contains confirmation that the input was imported 
successfully, computing timing summaries, and eigenvalue iteration history results. 

- Detailed Summary Output: contains full solution in the entire domain which is exported to 
an organized ASCII file for detailed analysis.  

- Visualization Output: contains the solutions of primary variables such as flux and power in 
the VTK file format which is readable by VisIt (within the Workbench). 

Similar to the DIF3D calculation capability, post-processing of PROTEUS-NODAL output was 
implemented by printing the main information of interest to a user in the summary file 
(“.summary”). When opening this “.summary” file with the Workbench, the user can use the “flux 
spectrum” processing to automatically plot the neutron flux spectrum. The direct visualization of 
the primary variables is enabled by opening the generated “.vtk” file with VisIT through the 
Workbench. The implemented post-processing capabilities are illustrated in Figure 3-11. A sample 
input #12 demonstrating the Nodal workflow was developed within the released tutorial. 

 

https://code.ornl.gov/neams-workbench/PyARC/-/blob/master/tutorial/Sample_12_PROTEUS_NODAL/README.md#sample12
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Figure 3-10. PROTEUS-NODAL workflow implemented in PyARC. 

 

 

Figure 3-11. Example of post-processing for PROTEUS-NODAL: visualization of flux map (left) and 
assembly-wise summary table (right). 

 

For enabling the MSR analysis capability within the Workbench interfaces, as illustrated in Figure 
3-12, the additional pre-process logic was implemented to translate the Workbench input format 
of flowing fuel model description into the associated PROTEUS-NODAL input format. The DLAYXS 
file generation process was streamlined within the execution logic of PROTEUS-NODAL to provide 
delayed neutron precursor parameters. A sample input #13 demonstrating the MSR modeling was 
developed within the released tutorial. 

https://code.ornl.gov/neams-workbench/PyARC/-/blob/master/tutorial/Sample_13_PROTEUS_MSR/README.md#sample13
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Figure 3-12. Example of MSR calculation within the Workbench.  

3.6.2 PROTEUS-MOC [13]  

The PROTEUS-MOC code is a neutron transport solver based on the 3D method of characteristics 
(MOC) for 2D unstructured finite element meshes with axial extrusion. It allows modeling most of 
complex or unconventional geometry reactor problems. To provide high-fidelity level in an 
efficient manner, the PROTEUS-MOC code employs a unique 3D formulation which combines the 
two-dimensional (2D) MOC radially and the discontinuous Galerkin finite element method axially. 
The PROTEUS-MOC code has capabilities to solve steady-state and transient problems. The 
steady-state and transient capabilities were connected to the PyARC module to improve the 
usability of PROTEUS-MOC by leveraging the user-friendly interface provided by Workbench. This 
extension can be used for PROTEUS-SN with minor updates as well. 

The PyARC common input logic for geometry creation does not support an unstructured finite 
element mesh generation in a format that is compatible with PROTEUS-MOC. Consequently, the 
PROTEUS-MOC integration does not currently use the PyARC geometry description logic and 
instead relies on pre-generated off-line mesh and associated cross section generations.  

The workflow for PROTEUS-MOC calculation was built upon the existing PyARC module and its 
sub-module for PROTEUS-NODAL. The implemented workflow is illustrated in Figure 3-13. The 2D 
mesh file can be generated by making use of mesh generation tools such as CUBIT [30]. 
Alternatively, the ANL mesh toolkit [31] can be used for generating typical reactor lattices 
geometries. The associated multi-group cross section data can be prepared by using the cross-
section generation codes such as MC2-3 or Monte Carlo codes (SERPENT and OpenMC). After 
checking consistency of these externally pre-generated input files, the PyPROTEUS modules can 
return the following input files for PROTEUS-MOC execution. A user should complete the 
assignment input file and update the driver input file for the problem of interest. 

- Assignment Input File: defines compositions and assigns them to the 3D geometrical 
regions by extruding the regions defined in the 2D mesh file.   

- Driver Input File: defines the simulation parameters such as power level, angular 
discretization, convergence criteria, parallelization, iteration limits, etc. 
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Figure 3-13. PROTEUS-MOC workflow implemented in PyARC. 

For the transient calculation mode, the additional input keywords are available in the Workbench 
interface to define perturbations of materials and temperatures for 3D geometrical regions of 
interest as a function of time. Based upon these user-defined transient descriptions, the pre-
process logic can prepare the time-dependent assignment files required for the execution of 
PROTEUS-MOC. 

PROTEUS-MOC is executed via the runtime environment of PyARC. Once the calculation is 
completed, the PROTEUS-MOC code produces two basic types of outputs as: 

• Main Text-based Screen Output: contains confirmation that the inputs are imported 
successfully, computing timing summaries, and eigenvalue iteration history results. 

• Detailed Solution Output: contains mesh-wise solution in the entire 3D domain, which is 
exported to an organized binary file format for detailed analysis. 

Upon execution of PROTEUS-MOC, it is recommended to use HPC clusters via the remote 
execution feature of Workbench due to the computational resource demands of detailed 3D 
transport calculations. The PROTEUS-MOC code provides the external data-processing utility to 
extract data of interest and to visualize detailed 3D solutions by processing the detailed solution 
output file. In the workflow, the data-processing utility is additionally executed for the subsequent 
post-processing. The post-processing of the PROTEUS-MOC outputs was implemented by printing 
the main information of interest to a user in the summary file (“.summary”). When opening this 
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“.summary” file with the Workbench, the user can use the “flux spectrum” processing to 
automatically plot the neutron flux spectrum for each region. The direct visualization of the 
primary variables is enabled by opening the generated “.vtk” file with VisIt through the 
Workbench. The implemented post-processing capabilities are illustrated in Figure 3-14. 

 

 

Figure 3-14. Example of post-processing for PROTEUS-MOC: visualization of flux map (left) and 
region-wise summary table (right). 

3.7 ORIGEN-S [32] 

New in V1.1.0 

The ORIGEN-S code deployed within the SCALE package is used by ARC users for detailed depletion 
and decay calculations. This is required to compute decay heat, detailed isotopic composition, 
radio-activity, neutron sources, etc. ORIGEN-S traces more than 1,300 nuclides by solving 
Bateman equations using pre-generated one-group neutron libraries. A coupling procedure was 
developed by ARC users to generate problem-dependent one-group cross sections and to 
reproduce the REBUS depletion simulation using ORIGEN-S. This procedure was integrated into 
PyARC in FY-2020 within the PyREBORS.py function. Figure 3-15 shows the coupling procedures 
for depletion calculations using ORIGEN-S along with the REBUS-3 physics code.  

In this PyREBORS procedure, problem-dependent effective one-group cross sections are obtained 
from the depletion calculations using the REBUS-3 code. However, since the physics code handles 
only about tens or hundreds of nuclides in the depletion calculation, the available one-group 
cross-sections are limited to the nuclides that are modeled by the ARC codes (limited to the ~200 
isotopes available in the MC2-3 library). The one-group cross sections are generated by using the 
COUPLE code [32] in the coupling-procedure with the ORIGEN-S code. It is noted that the SCALE 
code package has multi-group libraries with 238, 200, 49, or 40 group structures for thermal and 
fast systems. Thus, the one-group cross sections is generated by condensing those libraries using 
the problem-dependent neutron spectra obtained from the depletion calculations using REBUS-
3. 
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The user input of the new “rebus_to_origens” block in the PyARC is shown in Figure 3-16 
(extracted from Sample #14 in the tutorial). The ORIGEN-S calculation re-produces the once-
through burnup simulation modeled with REBUS in the PyARC sub-assemblies selected by the 
user. The rebus calculation can be skipped by providing a pre-generated REBUS output using the 
“rebus_output_file” option. The one-group XS (capture, fission and (n,2n)) computed by REBUS-3 
will be used by ORIGEN-S for the isotopes specified by “list_isotope_XS_transfer”. The other 1-gp 
XS (for other actinides, reactions, fission products, etc.) are computed based on a detailed flux 
structure that can be specified with an external file “detailed_flux.isotxs”, or by using the REBUS-
generated flux spectrum (option by default) - the flux is automatically being linearly interpolated 
by PyARC to match the ORIGEN structure selected. The ORIGEN-S irradiation is then computed 
based on the initial power or on the flux at each step in every sub-assembly selected (using the 
“power_or_flux” option). Following irradiation, decay calculations is completed using the 
cumulative steps specified in “decay_cumul_steps”. 

 

Figure 3-15. Workflow implemented of the REBUS-3 to ORIGEN-S coupling. 

 

 

Figure 3-16. Example of coupled depletion PyARC input and summary output. 

The ORIGEN input and output are provided back in the “*.zip/origen_XXXX.*”, and the main 
results are extracted in the “.summary” file as shown in Figure 3-16. The results extracted are the 

REBUS-3

https://code.ornl.gov/neams-workbench/PyARC/-/blob/master/tutorial/Sample_14_ORIGENS/README.md#sample14
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nuclide concentration for all the actinides concentrations throughout irradiation and decay, 
together with their contribution to the total radioactivity and decay heat computed after 
discharge throughout decay simulation. 

Important Notes: 

- Only the ORIGEN-S version from the Scale 6.1 package was tested. 

- The depletion implemented only represent the initial loading of heavy nuclei, while 
activation products are not tracked yet. 

- The default branching ratio of Am-241 are representative of a fast neutron spectrum. 

- The ORIGEN-S irradiation is only used to re-produce once-through depletion calculation in 
a sub-assembly – it is currently not suitable to represent equilibrium search and assembly 
shuffling problems. 

This methodology coupling REBUS-3 to ORIGEN-S is demonstrated in Appendix B comparing the 
masses of the main heavy nuclides of the discharged fuel compositions provided by REBUS-3 to 
the detailed composition generated by ORIGEN-S. Future work should include addressing some of 
the limitations of the current implementation above-discussed.  
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4 Conclusions and Future Work 

This report details the status of the ARC and NEAMS codes capabilities integrated into the NEAMS 
Workbench. Integrating the ARC codes into the Workbench benefits directly the advanced reactor 
community (within the DOE national laboratories, universities and companies) by: 

- Providing a set of controlled, maintained, documented and validated scripts to generate 
ARC inputs, which promotes best practices, reduces the learning curve, and facilitates 
project collaboration.  

- Improving the user experience with the ARC codes: the Workbench interface provides 
assistance for building an input through auto-completion, real-time validation, document 
navigation, and geometry and results visualization.  

- Enabling new modeling capabilities for advanced reactor design and analyses. The PyARC 
module facilitates and automatizes complex calculations and workflows for reactor 
analysis enabling geometrical perturbations, cross-section update through depletion, etc. 
The Dakota/PyARC coupling in the Workbench was also demonstrated to enable 
mathematical optimization and sensitivity analysis/uncertainty quantification (SA/UQ) 
techniques with ARC neutronic simulations. 

- Helping users transition to high-fidelity NEAMS codes, through PROTEUS integration 
within the same input logic as the legacy ARC codes. 

In FY-2020, effort focused on integrating the REBUS to ORIGEN-S coupling capability for detailed 
irradiation calculations, and the CovMat utility to generate correlations within nuclear data 
uncertainties on reactivity feedbacks. Those capabilities were integrated as requested by PyARC 
users.  Various minor improvements were completed to enable additional modeling options and 
to respond to user requests. 

The ARC and NEAMS codes are currently used at ANL, Westinghouse, INL, and NCSU through the 
Workbench by nuclear engineers for LFR, MSR, micro-reactor, and SFR core design analyses [22], 
[33], [34], [35], [36]. Several in-persons training were organized in FY-2020 to ANL, Westinghouse, 
and at the NRC. 

Future efforts will focus on continuously adding new and existing modeling capabilities available 
with the ARC and NEAMS codes, training new users and supporting them to continue building user 
experience. 
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Appendix A : Description of the CovMat Script 

The CovMat script is developed to compute the covariance matrix used for propagating nuclear 
data uncertainties on reactivity feedback coefficients through transients analyses. Detailed 
description of the methods employed is provided in [29]. This appendix summarizes the method 
used for computing this matrix, and details the workflow implemented in the CovMat script. 

A.1 Method Description 

The PERSENT code is used to calculate sensitivity coefficients on reactivity coefficients based on 
the forward and adjoint fluxes calculated by DIF3D. This sensitivity analysis is performed in 33 
energy macro-groups using the generalized perturbation theory to calculate the sensitivity 

coefficients (𝑆𝑗,𝑥,𝑝 =
𝜕𝑘

𝜕𝜎𝑗,𝑥,𝑝

𝜕𝜎𝑗,𝑥,𝑝

𝑘
, with p, x, and j the indices representing the isotope, the cross-

section type, and energy group, respectively) for k-effective (k) or other reactivity effects, to 
variations of a cross-section σ. The nuclear data uncertainties associated with the ENDF/B-VII 
library [37] are provided in 33 energy macro-groups with the covariance matrix COMMARA-2.0 
[38]. The uncertainties 𝐼𝑖

2 of the neutronic feedback coefficients i in each core region (Doppler 
effect, density expansion coefficients, control rod worth…) are obtained for each isotope p, 
reaction x, and energy group j by applying the “sandwich equation”: 𝐼𝑖

2 = 𝑆𝑖
𝑇𝐷𝑆𝑖 , where D is the 

COMMARA-2.0 covariance matrix and Si is the sensitivity matrix associated to this reactivity 
coefficient.  

Uncertainties from nuclear data are propagated through transients by perturbing the neutronic 
parameters based on a stochastic sampling approach as detailed in [29]. However, such 
methodology usually assumes independent uncertainties. This is a poor assumption in the case of 
nuclear data uncertainty propagation since the uncertainties of different feedback coefficients 
can be traced back to a few uncertain cross-sections:  a change in one of these cross sections 
affects some of the reactivity coefficients involved in a similar way. Independent propagation will 
end up under-estimating the total uncertainty as shown in [29] (due to forced-independent 
parameters “cancelling” each other). Consequently, the method developed to perform nuclear 
data uncertainty propagation was developed to allow taking into account two types of 
correlations within the uncertainties of different reactions: 

• spatial correlations between uncertainties in different core regions (for instance, 
correlations between uncertainties on the sodium density coefficient in the driver fuel and 
in the gas plenum) 

• reaction-wise correlations between the uncertainties of different reactivity coefficients 
(for instance, correlation between the uncertainties on the Doppler and sodium density 
coefficients) 

The objective of the approach described here is to enable propagating the uncertainties through 
transients in a dependent way with the definition of the correlation and covariance matrices. In 
equation (1), I2 represents the total variance of the system over all the i=1…n reactivity coefficients 
over the different core regions evaluated. If i represents a feedback coefficient in different spatial 
regions, then I2 indicates the total uncertainty of the reactor for that specific coefficient. If i 
represents different feedback coefficient (e.g. Doppler, density coefficients, …), then I2 does not 
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have a physical meaning but represents mathematically the total contribution of the uncertainties 
from these different coefficients. The correlation matrix C is defined by the following Equation (1) 
and (2) with the associated correlation coefficients 𝜌𝑖,𝑗  between the uncertainty of reactions i and 

j. This correlation matrix C is symmetric because D is symmetric. 

 

𝐼2 = ∑ 𝑆𝑖
𝑇

𝑖

𝐷 ∑ 𝑆𝑖

𝑖

= ∑ 𝐼𝑖
2

𝑖

+ 2 ∑ ∑ 𝑆𝑖
𝑇𝐷𝑆𝑗 = (𝐼1 ⋯ 𝐼𝑛)𝐶 (

𝐼1

⋮
𝐼𝑛

)

𝑗<𝑖𝑖

= ∑ 𝐼𝑖
2

𝑖

+ 2 ∑ 𝐼𝑗𝐼𝑖𝜌𝑖,𝑗

𝑖,𝑗 (𝑖≠𝑗)

 

(1) 

 

𝜌𝑖,𝑗 =
𝑆𝑖

𝑇𝐷𝑆𝑗

𝐼𝑗𝐼𝑖
=

𝑆𝑖
𝑇𝐷𝑆𝑗

√𝑆𝑖
𝑇𝐷𝑆𝑖 ∙ √𝑆𝑗

𝑇𝐷𝑆𝑗

 ;    𝐶 = (

1 ⋯ 𝜌1,𝑛

⋮ 1 ⋮
𝜌𝑛,1 ⋯ 1

) (2) 

The correlations inform on the dependence relationship of the different uncertainties on the 
reactivity coefficients. However, for propagating dependent uncertainties, one requires a 
covariance matrix. The co-variance term between reactions i and j that appears in Equation (1) 
may also be written with equation (3). The associated covariance matrix Σ for the uncertainties is 
described in Equation (4). By definition, the covariance matrix Σ should be symmetric and positive 
definite so it should allow Cholesky decomposition. This decomposition of the Σ matrix into its 
lower triangular matrix L using the Cholesky equation described in Equation (5), allows generating 
a random vector x following a N(0, Σ) distribution (normal distribution, mean is zero, and 
covariance matrix is Σ). Starting from vector z generated by uncertainty propagation code (such 
as Dakota [18]) following a N(0, I) distribution (normal distribution, mean is zero and covariance 
matrix is identity matrix), the vector x is estimated according to Equation (6) and is used to perturb 
reactivity coefficient in transient simulations.  

𝐹𝑜𝑟 𝑖 ≠ 𝑗: 𝑐𝑜𝑣(𝑖, 𝑗) = 𝐼𝑗𝐼𝑖𝜌𝑖,𝑗 = 𝑆𝑖
𝑇𝐷𝑆𝑗 (3) 

𝛴 = (

𝐼1
2 ⋯ 𝑐𝑜𝑣(1, 𝑛)

⋮ 𝐼𝑖
2 ⋮

𝑐𝑜𝑣(𝑛, 1) ⋯ 𝐼𝑛
2

) = (

𝑆1
𝑇𝐷𝑆1 ⋯ 𝑆1

𝑇𝐷𝑆𝑛

⋮ 𝑆𝑖
𝑇𝐷𝑆𝑖 ⋮

𝑆1
𝑇𝐷𝑆𝑛 ⋯ 𝑆𝑛

𝑇𝐷𝑆𝑛

) (4) 

Σ=LLT (5) 

(

𝑥1

⋮
𝑥𝑛

) = 𝐿 (

𝑧1

⋮
𝑧𝑛

) (6) 

A.2 Workflow Implemented in CovMat Script 

This section illustrates the different steps followed in the CovMat script to generate the 
correlation coefficients. This example includes a reactor that consists of three reactor zones XXXX, 
YYYY, and ZZZZ and 2 different reactions “F” and “C”. The covariance matrix that needs to be filled 
out is shown in Table 1.  
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In this example, subscript “F” represents fuel density perturbation and subscript “C” represents 
coolant density perturbation. Subscript “K” refers to the reference case. Subscripts XXXX, YYYY, 
and ZZZZ refer to reactivity worth for different reactor zones. The sensitivity of 𝑆𝐾,𝑋𝑋𝑋𝑋  represents 

the sensitivity on un-perturbed K-eff calculated with PERSENT (through PyARC/sens_calc with the 
option “print_by_zone=true”). The sensitivity of 𝑆𝐹,𝑋𝑋𝑋𝑋  represents the sensitivity on perturbed 
K-eff calculated with PERSENT (through PyARC/sens_calc with the option “print_by_zone=true” 
and “sens_type = keff”). An example of input used to generate the sensitivities is shown in the 
tutorial. Those sensitivities need to be computed prior to running the CovMat utility, and stored 
appropriately with their “K/XXXX_sens_K.sens” file names. 

 

Table 1. Example of correlation matrix. 

Reactions  F F C 

 regions XXXX YYYY ZZZZ 

F XXXX 𝑆𝐾𝐹,𝑋𝑋𝑋𝑋
𝑇 𝐷𝑆𝐾𝐹,𝑋𝑋𝑋𝑋  𝑆𝐾𝐹,𝑋𝑋𝑋𝑋

𝑇 𝐷𝑆𝐾𝐹,𝑌𝑌𝑌𝑌  𝑆𝐾𝐹,𝑋𝑋𝑋𝑋
𝑇 𝐷𝑆𝐾𝑐,𝑍𝑍𝑍𝑍 

F YYYY 𝑆𝐾𝐹,𝑌𝑌𝑌𝑌
𝑇 𝐷𝑆𝐾𝐹,𝑋𝑋𝑋𝑋  𝑆𝐾𝐹,𝑌𝑌𝑌𝑌

𝑇 𝐷𝑆𝐾𝐹,𝑌𝑌𝑌𝑌 𝑆𝐾𝐹,𝑌𝑌𝑌𝑌
𝑇 𝐷𝑆𝐾𝑐,𝑍𝑍𝑍𝑍 

C ZZZZ 𝑆𝐾𝐶,𝑍𝑍𝑍𝑍
𝑇 𝐷𝑆𝐾𝐹,𝑋𝑋𝑋𝑋  𝑆𝐾𝐶,𝑍𝑍𝑍𝑍

𝑇 𝐷𝑆𝐾𝐹,𝑌𝑌𝑌𝑌 𝑆𝐾𝐶,𝑍𝑍𝑍𝑍
𝑇 𝐷𝑆𝐾𝑐,𝑍𝑍𝑍𝑍 

 

The first step of the CovMat utility computes the sensitivities on the region-wise reactivity 
coefficients. For instance, 𝑆𝐾𝐹,𝑋𝑋𝑋𝑋  is the sensitivity in region XXXX for reactivity coefficient F: 

(F). The 𝑆𝐾𝐹,𝑋𝑋𝑋𝑋  sensitivity coefficient and its associated variance (𝑆𝐾𝐹,𝑋𝑋𝑋𝑋
𝑇 𝐷𝑆𝐾𝐹,𝑋𝑋𝑋𝑋 ) is 

calculated with PERSENT using the following input. This calculation will also generate the 
“XXXX_sens_KF.sens” files that will be used in the following step. 

SENSITIVITY_FILE KEFF_K XXXX_sens_K.sens  

SENSITIVITY_FILE KEFF_F XXXX_sens_F.sens  

SENSITIVITY_DIFF DRHO_F_XXXX KEFF_K KEFF_F 

SENSITIVITY_EDITS DRHO_F_XXXX XXXX_sens_KF.sens  

SENSITIVITY_DOUQ DRHO_F_XXXX YES YES YES  

COMMARA_INPUT      COMMARA.inp   

COMMARA_IGNORE 

MISSINGDATA 

YES   

COMMARA_ISOTOPE      C____7       CARBON  

⋮ ⋮ ⋮ ⋮ 

 

The second step consists in computing the co-variance parameters, such as  
𝑆𝐾𝐹,𝑌𝑌𝑌𝑌

𝑇 𝐷𝑆𝐾𝐹,𝑋𝑋𝑋𝑋   using the “bilinear” calculation from PERSENT [10]. This calculation relies on 

https://code.ornl.gov/neams-workbench/PyARC/-/blob/master/utilities_covmat/tutorial/README.md#tutorial
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the sensitivity files for the reactivity coefficients generated within the first step. An example of 
PERSENT input used to generate 𝑆𝐾𝐹,𝑌𝑌𝑌𝑌

𝑇 𝐷𝑆𝐾𝐹,𝑋𝑋𝑋𝑋  is provided thereafter. 

SENSITIVITY_FILE DRHO_F_XXXX XXXX_sens_KF.sens  

SENSITIVITY_FILE DRHO_F_YYYY YYYY_sens_KF.sens  

BILINEAR COV_XXXX_YYYY_FF  DRHO_F_XXXX DRHO_F_YYYY 

SENSITIVITY_DOUQ COV_XXXX_YYYY_FF YES YES YES  

COMMARA_INPUT      COMMARA.inp   

COMMARA_IGNORE 

MISSINGDATA 

YES   

COMMARA_ISOTOPE      C____7       CARBON  

⋮ ⋮ ⋮ ⋮ 

Through these two steps, one can build the full covariance matrix. Since the covariance matrix 
generated can be extremely large, the PERSENT calculations can be parallelized and run on several 
CPUs. The option is also provided in the CovMax to include only the reaction-wise or spatial 
correlations.  

The final step is the computation of the Cholesky decomposition (equation (5)) using built-in 
Python procedures. It should be mentioned that the covariance matrix Σ calculated with PERSENT 
may not always be positive and symmetric due to rounding approximations and to not fully 
converged sensitivity calculations. Consequently, a procedure was developed that forces the 
symmetry of the matrix, calculates its eigenvalues, replaces negative ones with small positive ones 
(10-20), and re-constructs the Σ covariance matrix.  

The tutorial developed in PyARC provides an example test problem, and the associated output 
generated through this CovMat utility script. 

 

 

 

 

 

https://code.ornl.gov/neams-workbench/PyARC/-/blob/master/utilities_covmat/tutorial/README.md#tutorial
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Appendix B : Verification Test Of REBUS-3 To ORIGEN-S Coupling 

The verification test discussed in this Appendix is based on the Tutorial Sample #14 example with 
a fast-spectrum reactor modeling exercise. In this analysis, the higher detailed decay chain using 
Lumped Fission Products was employed. The calculation card was also modified by specifying 
higher core power (1,000 MW) through longer and more numerous time-steps (5 time-steps of 
200 EFPDs) in order to reach higher discharged burnup of ~100 GWd/t.  

The discharged heavy nuclei isotopic compositions are displayed in Table 2 comparing the REBUS-
3 and REBUS-to-ORIGEN-S simulations. The ORIGEN-S simulations use the 1-group cross-sections 
computed at every time-step with REBUS-3 for all the heavy actinides listed in Table 2. Two 
options of the “rebus_to_origens” calculations are compared: the OS(Power) uses the initial 
power density calculated by REBUS-3 in the sub-assembly, while the OS(Flux) uses the total flux 
calculated by REBUS-3 at each time-steps.  

Table 2. Comparison of discharged mass between REBUS-3 and different REBUS-to-ORIGEN-S 
coupled approaches. 

(kg) 
REBUS 

BOL 
REBUS 

EOL 
OS(Power) 

EOL 
Diff 

(R-OS)/R 
OS(Flux) 

EOL 
Diff 

(R-OS)/R 

U234 1.44E-05 1.64E-01 1.66E-01 1.1% 1.66E-01 1.2% 

U235 5.49E+02 2.54E+02 2.54E+02 0.0% 2.54E+02 0.0% 

U236 1.45E-05 5.51E+01 5.52E+01 0.2% 5.52E+01 0.3% 

U238 2.72E+03 2.44E+03 2.44E+03 0.0% 2.44E+03 0.0% 

Np237 1.46E-05 5.31E+00 5.21E+00 -1.9% 5.22E+00 -1.8% 

Np238 1.46E-05 1.23E-02 1.21E-02 -1.2% 1.21E-02 -1.5% 

Np239 1.47E-05 8.30E-01 8.36E-01 0.7% 8.32E-01 0.2% 

Pu238 1.46E-05 1.21E+00 1.18E+00 -2.6% 1.18E+00 -2.5% 

Pu239 1.47E-05 1.46E+02 1.46E+02 -0.1% 1.46E+02 0.0% 

Pu240 1.48E-05 1.37E+01 1.37E+01 -0.1% 1.37E+01 0.0% 

Pu241 1.48E-05 8.40E-01 8.37E-01 -0.3% 8.39E-01 -0.1% 

Pu242 1.49E-05 4.86E-02 4.83E-02 -0.6% 4.85E-02 -0.2% 

Am241 1.48E-05 2.44E-02 2.49E-02 2.3% 2.50E-02 2.5% 

Am242m 1.49E-05 7.56E-04 7.71E-04 2.1% 7.74E-04 2.4% 

Am243 1.50E-05 2.31E-03 2.29E-03 -0.9% 2.30E-03 -0.4% 

Cm242 1.49E-05 1.87E-03 1.91E-03 2.0% 1.92E-03 2.2% 

Cm243 1.50E-05 4.87E-05 4.97E-05 1.9% 4.99E-05 2.3% 

Cm244 1.50E-05 3.23E-04 3.19E-04 -1.2% 3.21E-04 -0.7% 

Cm245 1.51E-05 2.25E-05 2.23E-05 -1.3% 2.23E-05 -0.9% 

Cm246 1.51E-05 1.35E-05 1.35E-05 -0.1% 1.35E-05 -0.1% 

Total ACT 3.27E+03 2.92E+03 2.92E+03 0.0% 2.92E+03 0.0% 

Total FP 5.06E-05 3.47E+02 3.47E+02 0.1% 3.48E+02 0.2% 
 

https://code.ornl.gov/neams-workbench/PyARC/-/blob/master/tutorial/Sample_14_ORIGENS/README.md#sample14
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A very good agreement is observed with less than 0.5% of discrepancy for the most important 
nuclides such as U-238 and Pu-239. Discrepancies obtained with ORIGEN-S are less than 2% and 
are mostly observed for Minor Actinides. The discrepancies in the discharged mass of the main 
heavy nuclei are acceptable and can be explained by differences in the decay chain and the one-
group cross-sections of non-major nuclides and reactions.  

Both ORIGEN-S irradiation options (using Flux and Power renormalization) provide very close 
results in terms of discharged actinide composition. In fact, a very small impact is also observed 
in Table 3 on the radio-activity and decay heat computed after discharge. To conclude, these 
results confirm proper implementation of the REBUS-3 to ORIGEN-S coupling strategy and its 
different renormalization approaches. 

Table 3. Comparison of decay results between different REBUS-to-ORIGEN coupled approaches. 

Depletion - Years 0.1 1.0 10 100 1,000 10,000 1.E+5 

Irradiation Method Radioactivity, curies 

OS(Flux) Total ACT 4.00E+8 3.45E+5 1.14E+5 8.33E+4 2.35E+4 1.23E+4 7.96E+3 

OS(Flux) Total FP 1.63E+9 1.06E+8 2.17E+7 3.30E+6 3.65E+5 2.14E+2 1.99E+2 

OS(Power) Total ACT 4.02E+8 3.46E+5 1.14E+5 8.33E+4 2.35E+4 1.23E+4 7.97E+3 

OS(Power) Total FP 1.64E+9 1.07E+8 2.17E+7 3.30E+6 3.65E+5 2.14E+2 1.99E+2 

Diff (F-P)/F -0.7% -0.3% 0.0% 0.0% 0.0% -0.1% 0.0% 

Irradiation Method Thermal power, watts 

OS(Flux) Total ACT 1.03E+6 1.62E+3 1.03E+03 9.66E+02 7.32E+02 3.84E+02 2.47E+02 

OS(Flux) Total FP 2.02E+7 4.16E+5 8.25E+04 9.12E+03 1.01E+03 1.01E-01 9.74E-02 

OS(Power) Total ACT 1.04E+6 1.62E+3 1.04E+03 9.66E+02 7.32E+02 3.84E+02 2.47E+02 

OS(Power) Total FP 2.04E+7 4.17E+5 8.25E+04 9.12E+03 1.01E+03 1.01E-01 9.74E-02 

Diff (F-P)/F -0.6% -0.2% -0.1% 0.0% 0.0% 0.0% 0.0% 
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